Frontiers in Computer Science and Technology 计算机科学与技术前沿

Spring 2024 <u>Tailin Wu</u>, Westlake University Website: <u>ai4s.lab.westlake.edu.cn/course</u>

U

Outline

- Course logistics
- Why study this course?
- Course introduction
 - Tasks
 - Neural Architecture
 - Learning paradigm
 - Application in AI and Science

Course logistics

We are going to learn important branches of **AI techniques** and their **application in science**, both the **fundamentals** and **the frontiers**:

AI techniques:

- Deep Learning
- Generative models
- Foundation models
- Reinforcement learning
- Robotics
- Computer vision and autonomous driving
- Graph Neural Network
- Evolutionary Machine Learning and Multi-objective Optimization

AI for Science:

- AI + PDEs/scientific computing
- AI + life science
- AI + materials science

Course timeline

All teachers are PIs in the AI direction in Westlake University

#	Торіс	Date	Teacher
1	Course introduction	Mon, 2/26	Tailin Wu
2	Frontiers in Deep Learning	Mon, 3/04	Tailin Wu, Tao Lin
3	Frontiers in Generative Modeling	Mon, 3/11	Tailin Wu
4	Foundation models	Mon, 3/18	Zhengzhong Lan
5	Introduction to Reinforcement Learning	Mon, 3/25	Tailin Wu
6	From AlphaGo to Robotics: Reinforcement Learning Applications	Mon, 4/01	Donglin Wang
7	Computer Vision and Autonomous Driving	Mon, 4/08	Kaicheng Yu
10	Frontiers in Graph Neural Networks	Mon, 4/29	Tailin Wu
11	AI + Life Sciences	Mon, 5/06	Ziqing Li
12	Evolutionary Machine Learning and Multi-objective optimization	Mon, 5/13	Yaochu Jin
13	AI + PDE/Scientific computing	Mon, 5/20	Tailin Wu
14	AI + Materials science	Mon, 5/27	Tailin Wu

Course arrangement

Time: Every Monday 8:50am - 10:35am

Typical time split:

8:50 – 9:35am (45min): First part

9:35 – 9:40am (5min): Discussion

9:40 - 10:25am (45min): Second part

10:25 – 10:35am (10min): Discussion

No prerequisite for the course

But would be good to have a basic understanding of neural network, its training, and write basic neural network with PyTorch

If you don't have any of the above background, that is fine. You only need half a day to master them, using the materials provided in this lecture.

Project guidance

Choose a problem related to your research, and use AI to solve it.

Team size: 1-3 people, encouraging interdisciplinary collaboration

Course project design @ midterm:

- Give a presentation (10min) that formulates the problem for the 5 questions, each with one slide:
 - 1. What is the problem?
 - 2. Why is it important
 - 3. Why is it hard?
 - 4. What is the limitation of the prior method?
 - 5. What is the main component of the proposed method?

Then detail the proposed method (3-4 slides) that uses an AI technique to solve the problem

#	Торіс	Date	Teacher
8	Course project design (1)	Mon, 4/15	Tailin Wu
9	Course project design (2)	Mon, 4/22	Tailin Wu

Project guidance

Course project report and discussion @ final:

Give a presentation (15min) that

- Formulates the problem in terms of the 5 questions before, each with one slide.
- Then detail the proposed method (3-4 slides) that uses an AI technique to solve the problem.
- Then report the main experiment results (3-4 slides)

Submit a project report that summarize the project.

#	Торіс	Date	Teacher
15	Course Project Reporting and Discussion (1)	Mon, 6/03	Tailin Wu
16	Course Project Reporting and Discussion (2)	Tue, 6/11	Tailin Wu

Course grading

Assessment Criteria	Percentage
Attendance	5%
Project proposal and discussion	30%
Project conclusion presentation	30%
Project conclusion report	35%

Grade	Assessment Standard	
А	90-100 points	
В	80-89 points	
С	70-79 points	
D	60-69 points	
F	Below 60 points	

The grading will be **generous**. The important thing is that you learn **useful AI techniques** that you can use for your own **research**.

Other logistics

Email: wutailin@westlake.edu.cn

Website: https://ai4s.lab.westlake.edu.cn/course

Questions?

Outline

- Course logistics
- Why study this course?
- Course introduction
 - Tasks
 - Neural Architecture
 - Learning paradigm
 - Application in AI and Science

Why study this course?

Self-introduction:

Why study this course?

If you are from science/engineering background, not so familiar with AI, you will:

- Know major AI techniques, their application areas, and limitations
- Able to use state-of-the-art AI techniques for your own research

If you are from AI background, you will:

- Learn state-of-the-art AI techniques in different subfields
- Know the open research problems for each subfield
- Collaborate and explore interdisciplinary research

Outline

- Course logistics
- Why study this course?
- Course introduction
 - Tasks
 - Neural Architecture
 - Learning paradigm
 - Application in AI and Science

Course introduction

Tasks

- Classification/ regression
- Simulation
- Inverse design/ inverse problem
- Control/planning

Neural architecture

- Multilayer perceptron
- Graph Neural Networks

X

- Convolutional Neural Networks
- Transformers

Learning paradigm

- Supervised learning
- Generative modeling
- Foundation models

Х

- Reinforcement learning
- Evolutionary and multiobjective optimization

Application (AI & Science)

- Robotics
- Games (e.g., Go, atari)
- Autonomous Driving
- PDEs

- Life science
- Materials science

Course introduction: tasks

X

Tasks

- Classification/
 regression
- Simulation
- Inverse design/ inverse problem
- Control/planning

Neural architecture

• Multilayer perceptron

- Graph Neural
 Networks
- Convolutional Neural Networks
- Transformers

Learning paradigm

- Supervised learning
- Generative modeling
- Foundation models

Х

- Reinforcement learning
- Evolutionary and multiobjective optimization

Application (AI & Science)

- Robotics
- Games (e.g., Go, atari)
- Autonomous Driving
- PDEs

- Life science
- Materials science

Task 1: Classification & regression

Given many examples of (X, Y) pairs, learn a neural network (NN) f_{θ} that minimizes the prediction loss:

 $\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{(X,Y) \sim P(X,Y)} [\ell(f_{\theta}(X), Y)]$

 f_{θ} : neural network to be learned ℓ : loss function

Task 2: (Learning) simulation

Goal: learn the mapping f_{θ} from u^t to u^{t+1} :

u^t: original **state** (状态) of the system. Can be a graph (e.g., mesh, particle-based systems, molecules), a tensor, or an infinite-dimensional function u(t, x) as solution to a PDE

 f_{θ} : neural surrogate models (神经网络代理模型)

m^t: external control (外界控制)

a: static parameters (静态参数) of the system that does not change with time (e.g. parameters of PDE, spatially varying diffusion coefficient)

 ∂X : boundary condition (边界条件) of the system

PDE: partial differential equation ODE: ordinary differential equation

Tasks 3 & 4: Inverse design, inverse problem, and control

u^t: original **state** of the system. Can be an infinite-dimensional function u(t, x) as solution to a PDE, or a graph (e.g., mesh, particle-based systems, molecules)

 f_{θ} : neural surrogate models

 m^t: external control (外界控制)
 } control (控制)

 a: static parameters (静态参数) of the system that does not change with time (e.g. parameters of PDE, spatially varying diffusion coefficient)
 } inverse design (反向设计)

 ∂X: boundary condition (边界条件) of the system

Tasks 3 & 4: Inverse design, inverse problem, and control

 Inverse design: boundary ∂X, initial condition u⁰, parameter a to optimize design objective: plane design, rocket shape, underwater robot shape

• Inverse problem : infer initial condition u^0 or parameter a to match prediction with observation

• Control: optimize control m^t to optimize control objectives: controlled nuclear fusion, robotics

Tasks 2 & 3: Steady-state simulation and inverse design

Simulation:

parameter and boundary

steady state of the system

Aerodynamics simulation

Materials design

Protein design

Inverse design/inverse problem:

Course introduction: Neural architecture

Application (AI & Science)

- Robotics
- Games (e.g., Go, atari)
- Autonomous Driving
- PDEs

- Life science
- Materials science

Neural architecture: overview

The choice of neural architecture depend on the data structure:

Data structure	Examples	Suitable neural architecture
Vector	simple vectors	Multilayer Perceptron (MLP)
Graph	molecules, irregular mesh	Graph Neural Network (GNN)
Grid	image, videos	Convolutional Neural Network (CNN)
Sequence	time series, natural language	Transformer

Neural architecture 1: Multilayer Perceptron (MLP)

An MLP f_{θ} with *n* layers: $\hat{y} = W_n \sigma(... \sigma(W_2 \sigma(W_1 x + b_1) + b_2) + b_n$

 W_i : weight matrix to be learned b_i : bias vector to be learned σ : (nonlinear) activation function, e.g., ReLU, softplus, ELU

Neural architecture 2: Graph Neural Networks (GNN)

Predictions on the node/edge with updated features

GNN f_θ

input graph G = (V, E)

V: set of nodes with node features *E*: set of edges with edge features

Fluid dynamics, computer graphics

Mesh-based simulation for PDEs

Dislocation in materials

Proteins and small molecules

Neural architecture 3: Convolutional Neural Networks (CNN)

input tensor $X \in R^{d_1 \times d_2 \times \cdots \times d_n}$

output tensor $\hat{Y} \in R^{d'_1 \times d'_2 \times \cdots \times d'_n}$

image

video

PDE discretized on a regular grid

Neural architecture 4: Transformer

Neural architecture: Summary

Data structure	Suitable neural architecture	Course #
Vector	Multilayer Perceptron (MLP)	2 (Tailin Wu & Tao Lin)
Graph	Graph Neural Network (GNN)	10 (Tailin Wu)
Grid	Convolutional Neural Network (CNN)	7 (Kaicheng Yu)
Sequence	Transformer	4 (Zhenzhong Lan)

For each neural architecture (same goes for topics in the course), we will introduce its:

- Motivation
- Architecture
- Typical tasks
- Research frontiers

Course introduction: Learning paradigm

Application (AI & Science)

- Robotics
- Games (e.g., Go, atari)
- Autonomous Driving
- PDEs

- Life science
- Materials science

Learning paradigm 1: Supervised learning

Given many examples of $(X, Y) = \{(x_i, y_i)\}_{i=1}^N$ pairs, learn a neural network (NN) f_θ that minimizes the prediction loss:

 $\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{(X,Y) \sim P(X,Y)} [\ell(f_{\theta}(X), Y)]$

 f_{θ} : neural network to be learned ℓ : loss function

Learning paradigm 2: Generative modeling

Images and shapes generated by diffusion models:

By MeshDiffusion [1]

By DallE 2

Learning paradigm 2: Generative modeling

Robotic policy by diffusion models [1]

Text to video generation by Sora [2]

[1] Fu, Zipeng, Tony Z. Zhao, and Chelsea Finn. "Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation." *arXiv preprint arXiv:2401.02117* (2024).
[2] OpenAI team. "Video generation models as world simulators", 2024

Learning paradigm 2: Generative modeling

Given many examples of the input X, learn a probability model $p_{\theta}(X)$ that can sample new instances of X that conform to the data distribution

Major generative models:

- Diffusion models
- Flow
- Generative adversarial network (GAN)
- Variational autoencoder (VAE)

Learning paradigm 3: Foundation models

chatGPT

Sora [1]

uniMol [2]

[1] OpenAI team. "Video generation models as world simulators", 2024

[2] Zhou, Gengmo, et al. "Uni-Mol: a universal 3D molecular representation learning framework." ICLR 2023

Learning paradigm 3: Foundation models

Given many diverse tasks, each consists of its massive number of examples $(X^{(n)}, Y^{(n)}) = \{(x_i^{(n)}, y_i^{(n)})\}_{i=1}^{N^{(n)}}$, learn a single foundation model f_{θ} that can faithfully predict the target from the input.

Learning paradigm 4: Reinforcement learning

Controlled nuclear fusion [2]

Drone racing [3]

[1] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." *Nature* 529.7587 (2016): 484-489.
[2] Degrave, Jonas, et al. "Magnetic control of tokamak plasmas through deep reinforcement learning." *Nature* 602.7897 (2022): 414-419.

[3] Kaufmann, Elia, et al. "Champion-level drone racing using deep reinforcement learning." *Nature* 620.7976 (2023): 982-987.

Learning paradigm 4: Reinforcement learning

Goal: maximize the long-term expected reward w.r.t. to the policy $\pi(A_t|S_t)$

$$\max_{\pi(A_t|S_t)} \mathbb{E}_t[R_t]$$

Learning paradigm 5: Evolutionary and multi-objective learning

Optimization in engineering

[1] Schmidt, Michael, and Hod Lipson. "Distilling free-form natural laws from experimental data." science 324.5923 (2009): 81-85.

Learning paradigm 5: Evolutionary and multi-objective learning

Learning paradigm: Summary

Learning paradigm	Suitable scenarios	Course #
Supervised learning	Most standard	2 (Tao Lin, Tailin Wu)
Generative modeling	High-dimensional data, can also be used in any tasks in regression	3 (Tailin Wu)
Foundation models	Large diverse tasks	4 (Zhenzhong Lan)
Reinforcement learning	Agent interacting with environment, cannot pass gradient through	5 (Tailin Wu)
Evolutionary and multi- objective learning	Gradient-free, discrete optimization	12 (Yaochu Jin)

Course introduction: Application in AI and Science

Application (AI & Science)

- Robotics
- Games (e.g., Go, atari)
- Autonomous Driving
- PDEs

- Life science
- Materials science

Application in AI

robotics

games

self-driving

Application in AI for Science: from microscopic to macroscopic

42

Application in AI for Science: from microscopic to macroscopic

47

AI for Science: universal tasks

These three tasks are fundamental in **science** and **engineering**

These three tasks are equally fundamental in machine learning

Application: Summary

Application	Area	Course #
Robotics	AI	6 (Donglin Wang)
Games	AI	6 (Donglin Wang)
Self-driving	AI	7 (Kaicheng Yu)
AI + PDEs/scientific computing	AI for science	13 (Tailin Wu)
AI + Life sciences	AI for science	11 (Ziqing Li)
AI + Materials science	AI for science	14 (Tailin Wu)

Course introduction: Summary

X

Tasks

- Classification/
 regression
- Simulation
- Inverse design/ inverse problem
- Control/planning

Neural architecture

- Multilayer perceptron
- Graph Neural
 Networks
- Convolutional Neural Networks
- Transformers

Learning paradigm

- Supervised learning
- Generative modeling
- Foundation models

Х

- Reinforcement learning
- Evolutionary and multiobjective optimization

Application (AI & Science)

- Robotics
- Games (e.g., Go, atari)
- Autonomous Driving
- PDEs

- Life science
- Materials science

Useful materials to get started in deep learning

- Learn PyTorch in 1h: <u>https://pytorch.org/tutorials/beginner/introyt/introyt1_tutorial.html</u>
- Book: Deep Learning book (<u>https://www.deeplearningbook.org/</u>)

Hope you all learn useful techniques to help your research!

Questions?